An Approach to Information Security in Distributed Systems

C. Bryce, J-P. Banatre, D. Le Métayer
[RISA /INRIA-Rennes,
Campus de Beaulieu,

35042 Rennes Cedex,

France.

Abstract
Information flow conirol mechanisms detect and prevent ulegal transfers of information within a computer
system. In this paper, we give an overview of a programming language based approach to information flow conirol
m a system of communicating processes. The language chosen to present the approach is CSP. We give the
security semantics of CSP and show, with the aid of examples, how the semantics can be used to conduct both
manual and automated security proofs of application programs.

1 Introduction

One of the most noteworthy trends in modern computing is the proliferation of automated systems to com-
mercial, administrative and other fields. The amount of sensitive information being stored in computer systems
has increased as a consequence and with that, the seriousness of an attack on a system where a user succeeds in
illegally gaining access to information in the system Distributed computing has excacerbated this problem since
information can be accessed over wide geographical distances and so not only is there more means of attack, but
it 1s more difficult to control the processing activity of a system which leads to these attacks on the securlty, or
confidentiality, of the information stored.

Computer systems typically ensure information confidentiality using access control mechanisms [9]. In Unix for
example, each file has an access control list specifying the access rights (rwz) that the owner, the owner’s group
and other users (denoted ’world’) possess for the file. The basic principle of access control models is to associate
an access key with each operation on an object; only a process possessing a key may execute the associated
operation on the object. Yet as the example in figure 1 illustrates, information confidentiality cannot be assured
by access controls alone. In this example, user JOHN creates a mail message FYEO, denoting ”for your eyes only”,

FYEO COPY_FYEO
write read
write
TOM

Figure 1: Insecure Information Flow

which he wants to send to user BoB. To do this, JOHN creates the object FYEO and gives a key for the read
operation to BoB. To ensure that user ToM does not read the mail message, JOHN can specify that ToM must
not receive the read right for FYE0. Nevertheless, BOB may copy the contents of FYEO and write them to file
CoPY_FYEO, a file for which TOM possesses a read right. The result is that an illegal information flow from FYEO
to ToM occurs which the access controls have not prevented. To prevent this type of information flow, one could
structure the access constraints of the system in such a way that BoB can never write to a file that can be read
by ToM; however, this means that no sharing of information can ever occur between these two users. Rather, a
mechanism is needed which allows the flow of information in the system to be controlled.

In the preceding example, there is an implicit assumption that an attacker, in this case ToM, has an under-
standing of how the system behaves, that is, he expects that the data written to the file COPY_FYEO are the

www.manaraa.com

contents of the FYEO message sent to BoB by JOHN. Note that BoB may not necessarily have wilfully divulged
the contents of this message: his mail software may be errorness or infected by corrupt software known as a
Trojan Horse [8]. That such an understanding of the system’s behavior can be known by users is very plausible,
given that common user programs, such as editors, mail programs and file management utilities are often public
domain software packages, available from any number of FTP sites. The information security problem that must
be tackled is generalized in the schema of figure 2.

- / \
Begin i \ Q
I
® ©
End. \ !
\ /
9. @
N ,
< -
Program Text ~-_--

Observer X
Program Variables O

Figure 2: Observer inferring Information

An observer possesses a copy of the code of the application (e.g., mail program) - this is represented in the left
hand side of the figure. The observer also sees what is happening at run-time, that is, the security policy of the
system allows him to read the values of certain variables (e.g., mail objects). In the figure, the variables which
the observer 1s permitted to see are marked as shaded disks within the dotted circle; the disks outside of this
circle represent the variables of the application program, the information in which the observer is forbidden to
know. The security requirement is the following: given that the observer knows the program text of the system,
he must not be able to infer the value of the variables outside of the circle from the value of those variables inside;
in other words, there must be no information flow from the variables outside the circle to those on the inside.

As an example of the problem being addressed, let « be a variable outside of the circle - a variable whose value
the security policy of the system forbids the observer to know; let y be a variable inside the circle. If a program
containing the single assignment y := z is executed, then an illegal information flow occurs to the domain of the
observer: the observer can deduce the value of x from the value of y.

This paper’s approach to tackling this problem is to take a standard parallel programming language - we choose
CSP [11] - and to define the set of information flows that each command of the language effects. By formalizing the
description of these flows, the information flow semantics of the language is defined. This is the subject of section
2. Section 2 also details the semantics in axiomatic form, that is, as a series of axioms and rules [10] which are
used to manually prove that information flow restrictions placed on a program hold. In section 3, the information
flow semantics are developed into a compile-time algorithm that can automatically verify the information flow
constraints of a (sequential) program. Section 4 looks at related work and gives some conclusions.

2 An Information Flow Security Proof System
CSP [11] is a parallel programming language developed by Tony Hoare; this language is analyzed for information
flow in the following discussion. The main language declarations are given in figure 3.

Prog := [label::Process|| || label::Process | program
Process := Decl <; Decl »; Cmd <; Cmd > process

Decl := var v |array v declarations
Cmd := Comms | Alt | Rep | skip | v:= E | Cmd; Cmd commands
Comms := send | receive communication
send = label ' E send

receive = label 7 v recetve

Alt := [guard — Cmd < ; O guard — Cmd >] alternative
Rep := *[guard — Cmd < ; O guard — Cmd >] repetitive
guard := B | Comms guard

Figure 3: CSP Syntax Declarations

In the figure, <> signifies zero or more repetitions of the enclosed syntactical units, 'v’ stands for a variable
or a list of variables, 'E’ for an integer expression and "B’ for a Boolean expression.

www.manaraa.com

A CSP program contains a fixed number of processes, each identified by a character string ’label’. This ’label’
may also be an array where the entry label[i] names a process which has the same code as the other processes
named in the array. Processes communicate by two-way rendezvous: each process names the process that it wants
to communicate with; when one party in the communication executes its communication command, it blocks until
the partner process is ready to execute its communication. The effect of the communication is to assign the value
of the expression evaluated in the sending process to the variable of the receiving process named in the receive
command.

The alternative and repetitive commands consist of one or more guard branch pairs. A guard i1s a Boolean
expression, a communications command or a Boolean expression followed by a communication. A guard is passable
if, for an expression, it evaluates to true, and for a communication, the process named in the command is ready
to communicate with it. For guards consisting of both a Boolean expression and a communications command,
the expression must be true and the process named in the guard must be ready to communicate for the guard to
be passable.

When an alternative command is executed, a branch whose guard is passable is chosen. If more than one
guard is passable, then any one of the corresponding branches can be executed. If no guards are passable then
the process blocks until one of the communication guards becomes passable - unless there are no communication
guards or the processes named in the guards are terminated, in which case the command fails and the process
terminates.

On each iteration of the repetitive command, a branch whose guard is passable is executed. If more than one
guard is passable, then like for the alternative, any one of the branches is chosen. When no guard is passable, the
command terminates and the process continues.

2.1 Direct & Indirect Information Flows

There are two classes of information flows in programs. An assignment command causes a direct flow of
information from the variables appearing on the right hand side of the (:=) operator to the variable on the left
hand side. This is because the information in each of the right hand side operands can influence by causing variety
in the left hand side variable [6]. More intuitively, an observer learns more about the right-hand side variables
after execution of the command. The information that was in the destination variable is lost.

Conditional commands introduce a second class of flows [7]. The fact that a command is conditionally executed
transfers information to an observer on the value of the command guard. Consider the following program segment.
We use a multiple assignment for brevity; e() is some expression:

z:=e();
a:=0;b:=0;
[r=0—a:=1

Oxz#0—b:=1]

If someone knows the program text then, by inspecting either a or b after program execution, an observer can
deduce whether 2« was zero or not. This is an example of an implicit flow [7] or what we will more generally refer
to as an indirect flow.

To reason about the information flows of a program, some way of representing these flows is needed. We notably
need some way of representing the set of variables, information concerning which has flown to, or influenced, a
variable v. We call this set the security variable of v, denoted .

Indirect flows are modeled by the indirect variable, of which there is one per process, and is defined as a sequence
of sets of variables:

indirect : (Pvariables)t

(where P is the ”set of” operator and T stands for the set of non-zero length sequences.) The empty or nil
indirect is < {} =. The value of the flow of indirect, denoted val(indirect) is the set of all variables in the indirect

variable. Let indirect(i) denote the ith of n entries:
val(indirect) = U'Z} indirect(i)

where U is the set union operator. Since indirect is just a sequence (of sets), we assume the head(), tail() and
concatenation (o) operators. A set of variables V' may also be added to, as opposed to concatenated with, indirect.
This is done with the W operator. The set V' is set unioned with each entry in the ndirect sequence.

www.manaraa.com

V Windirect = o= (V U indirect(i))

Finally, we will need an operator for combining two indirect variables together. The operator is U. Note that it
is non-commutative. Its effect is to add using the W operator the variables in both indirects to the first indirect
argument’s entries:

indirect; Uindirect; = (val(indirect;) Uval(indirect;)) W indirect;

The flow security state of a program is defined as firstly, the mapping from each variable to i1ts security variable
and secondly, the value of indirect. Note that all the axioms and rules given in this paper are in terms of the flow
security state, not the functional state (mapping from variables to values). When describing the behavior of the
command types with respect to the flow security state, we will use an operational notation similar to [13]. The
flow semantics are defined as a transition relation ”—” which maps a program segment and state pair to another
such pair. The interpretation given (Cy, o) — (Ca, 7) is that the execution of the command structure Cy in flow
security state o leads to a state 7 from which the command structure C5 executes.

2.2 Assignment Command Flow Semantics
The command y := exp(x1, ,) has the effect of setting the security variable 7 to:

{z; |i=1.N}U{Z; |i=1..N} Uwval(indirect)

The term {a; | 7 = 1..N} captures the direct information flow from each z;. The term {Z; | i = 1..N} capture
the transitivity of the information flows. For example, the program [b := a; ¢ := b] causes a flow from variable a
and b to variable ¢ since ¢ contains the value of both a and b.! As mentioned, val(indirect) holds the value of the
information flows which the left hand side variable will indirectly receive. Indirect flows are looked at shortly in
the context of the repetitive and alternative commands.

A result of this approach is that a variable x may be a member of the security variable ¥ even though y cannot
be used to infer the current value of z; a subsequent assignment may have altered . This is intentional. As long
as the current value of y is functionally dependent on a (perhaps former) value of #, then « will be in . We are
trying to model the fact that y has received information form a source which may be forbidden to it, whatever
the current information content of that source. Of course, when y is reset or takes an assignment not involving
z, then z is no longer a member of the security variable ¥ since y’s new information content is independent of
(any previous) content of z. An alternative approach, where instances of variables in the program are tagged
is described in [5]; this mechanism permits the instances of a variable at various points of the program to be
differentiated.

The effect of the assignment on the program security state is captured by the following axiom (& la Hoare [10])?:

A=,
{Ply— ({= |i=1.N}U{Z;|i=1.N} U val(indirect))] }

y = exp(X1, T2, .ccco, TN)
P

where Pla « b] is a predicate equivalent to P except that every free occurrence of the variable a is replaced by
expression b. This axiom generalizes assignments with array variables since the commands a[i] := ¢ and e := al¢]
are equivalent to a := exp(a,i,e) and e := exp(a, i) respectively.
2.3 Sequential Composition of Commands

The rule for sequential composition (;) follows. If the command S1 establishes a flow security state satisfying
predicate Q from a state P and S2 establishes R, from @, then S1 followed by S2 must establish a state satisfying
R from P:

Rs —composition

{P} S1 {Q}, {Q} S2 {R}
TPYSI;S2 (R]

1 Constants are ignored in the flow calculus since they give no information concerning the values of variables. A constant’s security
variable is always the empty set {}. Thus the assignment a:=0 sets @ to val(indirect).

2 All our axioms and rules have an s’ (for secure) attached to their subscript to emphasize that they are defined on the flow security
state.

www.manaraa.com

2.4 Alternative Command Flow Semantics - Sequential Case

The variables in a guard flow indirectly in the branch when it executes since execution of the branch means
that the guard must be true. Moreover, command guards can be related, so a guard being true may imply the
value of other guards. Thus, we consider that there is an indirect flow from the variables of all guards to the
branch that executes. Similarly, if a branch is not executed, then this could mean that its guard is false and
therefore other guards are true (or false). Thus, there is an indirect flow from all guards to all branches which
are not executed. As an example of this, consider the following program segment.

z,y:=0,0;
[B—a:=T;y:=90not B—y:=2];
[t=7T—50y=9—50z=0— 53]

In the second alternative command, the execution of any branch gives information on all of the guards. That
18, 1if S7 executes then the condition £ = 7 must have been true. Consequently, an observer knows that y is 9
from the first alternative statement. This information is also discernible by observing that Ss has not executed.
Execution of S5 implies that x is zero and that therefore y is 2 since the second branch must have executed in
the preceding alternative.

The behavior of a secure alternative command with respect to the flow security state can be described as
follows. For a given flow security state o,

([i=1.NDOC; — S;;], 0) — (updatel;S;;update2,o)
where

updatel = o

indirect :== { ¢cUT | ¢ € Cypoor } o indirect; [:=1U{cUT|c€ Chroor } VI E lhs_vars
update2 =

indirect := tail(indirect)

lhs_vars is the set of variables appearing on the left hand side of the := operator in the branches of the command,;
Choor 18 the set of variables appearing in the guards. Naturally, the branch executed depends on the functional
state.

The transition is explained as follows. The indirect flows from the command guards exist only during the
command body. Thus, indirect is updated on entry (updatel) with the new indirect flow value which is removed
on exit (update2). Since the variables in the branches not executed do not see the effects of indirect, all variables
that can receive assignments in the command, lhs_vars, have their security variables updated with the flow value
of the guard variables on entry (updatel).

A rule describing the semantics of the alternative command is the following. We let Choor = {¢UT | ¢ € Chont };

Rs—alternative

P = Rlindirect « Cyoo1 o indirect, [— 1 U Cyoor ¥ | € lhs_vars],
Vi=L.N{R}S {T}
T = Qindirect — tail(indirect)]
{P}[01—>51DCQ—>SQD DCNHSN]{Q}

The rule is geared towards flow security proofs. Hence, for a predicate R, there is a predicate T that is established
no matter which of the command branches S; is executed. The relation between P and R and between 7" and @)
is that engendered by the assignment semantics and captures those modifications made to the flow security state
in updatel and update2.
2.5 Repetitive Command Flow Semantics

Repetitive commands also cause indirect information flows from the variables in the guards to all variables
which could possibly receive flows in the loop body since an observer of these variables can know the value of the
guards by examining the variables in the loop - even if the loop does not execute.

z,r:=e1(),e2(); /* expressions return non-negative values */
Z’ y’t = 0’ bl bl

Medy—y=y+1

Or#t—ti=t+1];

z:=1;

In this program segment, the values of y and ¢ will equal z and r respectively on loop termination, even if none
of the branches execute.

www.manaraa.com

Moreover, as Reitman [14] points out, since all variables receiving direct flows after the loop do so on condition
that the loop terminates, the variables of the loop guards flow indirectly to these variables. This is because it is
known after the loop termination that all guards are false. In the example above, by observing that z is 1, one
knows that # equals y and r equals . Consider thus the behavior of the repetitive command with respect to the
flow security state:

(*[i=1.NOC; — S;;], 0) — (update 1;S;;update2;*[i = 1.N OC; — S;;],0) or (update3, o)
where
update3 = o
indirect == { ¢ UT | ¢ € Cpoor } W indirect; | := 1 U { cUZ|c € Choot }

On each iteration of the loop, the flow value of the loop guard is pushed onto the indirect stack (updatel) and
popped at the end (update2). When the loop finally terminates, the indirect flow from the loop conditions to
all variables that could have received a flow in the loop ({hs_vars, to cater for the case when no branch executes)
and all variables which subsequently receive a flow is recorded (update3). Note how the W operation is used
instead of the o to capture the permanence of the change in indirect; moreover, the number of entries in indirect
is the same on entry and exit since any arbitrary nesting scheme of alternative and repetitive commands must be
supported.

A rule for how the secure repetitive command influences the flow security state 1is:
Rs—re etitive
P

P = R[indirect — Cyopr 0 indirect, [— 1U Cyoo ¥ I € lhs_vars],
R = Plindirect — tail(indirect)],
Vi=1.N{R}S; {R},

P = Qlindirect — Chy,o Windirect, | — 1 U Cyop1 ¥ | € lhs_vars]
{P}*[01—>51DCQ—>SQD DCNHSN]{Q}

We justify this rule using the transition given above. Since the command body may be executed any number of
times, we need an invariant on the flow security state. P serves as this invariant. Moreover, the modifications
that occur to the lhs_vars and indirect variables at the start and end of each branch allow an inner invariant R,
to be established. After termination, the final modifications to the flow variables establish a state satisfying Q.

2.6 Communication Command Flow Semantics

The effect of the communication command is to assign the expression in the send command to the variable in
the receive command. This is a direct flow. In addition, both indirects are updated to include each other’s value
using the U operator since execution of both processes is now dependent on the rendezvous having taken place,
that is, an observer of each process is aware that the other process has communicated.

(Palz || A%y, o) — (¢, 07)

where o resembles ¢’ except that 7 in ¢’ equals (F U 2 U val(indirect;) U val(indirects)), indirect; in ¢’ equals
(indirect; Uindirects) of o and indirects is (indirects U indirecty) of o.
2.7 Parallelism

It was mentioned in the last section that there is an indirect flow from conditional command guard variables
to the variables which can receive flows in the branches. In a similar way, when a process does a rendezvous,
there are subsequent updates and communications with other processes. The fact that these communications
take place, and that the updates which follow are made, gives information to observers of other processes about
the condition that was met in the process that made the first rendezvous.

Take the example in figure 4. An observer sees what is happening in process P2 at run-time. Since he knows the
process text, he can deduce the following results: If the value of y changes, then @ must be zero in process P1; if
b+ 0andr becomes 1, P1 did not take the branch with the communication command in its alternative command
and so (a # 0) must hold. Thus, indirect inter-process information flows may occur without a communication
taking place.

The solution we propose is to transfer the flow value of a condition on which a communication executes, only if
the communication takes place. If the communication is skipped, then the flow value of the condition is recorded
in a special variable rendezvous (one per process). On each communication, rendezvous in transferred in both
directions as part of the indirect flow. In our mechanism, rendezvous is incorporated into the indirect variable.
This approach works because interprocess indirect flows can only signal any useful information if a process from
which the flow originates, (transitively) communicates with the process with which it should have communicated,
later on. With the rendezvous mechanism, we are guaranteed that the flow value of the condition in question will
be transferred when this subsequent communication occurs.

www.manaraa.com

I
[b=0-->P1?y
b<>0-->skip

[a=0-->P2!x
a<>0--> skip];

P211

PL?r

Process P1 Process P2

Figure 4: Parallelism and Information Flow

2.7.1 The Alternative command

The complete alternative command of CSP is more complex than that introduced earlier. A guard may be a
Boolean expression, a communications command or a Boolean expression followed by a communications command.
However, in the presentation which follows, we assume the latter form b; « — S to be rewritten as b — «; .S where
b is a non-constant Boolean expression, o a communications and S a command sequence.

As mentioned previously, when a branch with a Boolean guard executes, there is an indirect information flow
from all Boolean guards to the branch variables. In contrast, a communications guard creates no such flow -
one cannot know the value of some Boolean guard from the fact that a communications guard was passable and
its branch executed. The indirect flows in each branch effected by the complete alternative command are now
summarized:

When a branch with a Boolean guard executes, its guard variables flow indirectly in the branch since the con-
dition must be true; the other Boolean guards also flow since the branch guard may imply that they are true
or false. All other branches receive a flow from the Boolean guards, even branches with communication guards,
since the branch not executing may mean that a Boolean guard somewhere is true.

When a branch with a communications guard executes, there are no indirect flows in the command since noth-

ing can be inferred about the values of the Boolean guards. Execution of the branch is not conditioned on the
value of any of the command’s Boolean guards.

The transitions for the alternative command is the following.
([i=1.N0OC; — S;;], 0) =201 (updatel;S;;update2’ o)

where updatel is the same as for the sequential version, bool(Cj) is true if the guard is a Boolean expression,
otherwise comms(Cy); missed_comms is true if one of the other branches of the alternative command contains a
communication with a process other than one communicated with in the executing branch.

update2’ = if missed_comms
then indirect := head(indirect) W tail(indirect)
else indirect := tail(indirect)

endif

And for a branch with a communications guard.
([i=1.N0OC; — SZ';], 0') —comms(Cs) (SZ, 0'7)
if there exists a matching communication command e, such that (« || C;, o) — (€, 7).
The semantics is explained as follows. updatel captures the indirect flows that occur in the branches at the
start of a Boolean guarded branch - all guards’ variables flow to all branches. After the branch has executed, one
must undo the changes to the indirect stack for the branch if it has a Boolean guard (update2’, else part) except

if a communications with some other process, not communicated with in the current branch, has been skipped.
This captures the flow arising due to the rendezvous mechanism (update2’; then part).

www.manaraa.com

We derive the following rule:
Rs—alternative

if bOOl(CZ) then (P = U[replacel], {U} S; {V}, V= Q[replace?])
if comms(C;) then ({P}C {T:; 1, {T: } S

{P}[01—>51DCQ—>SQ DCN—>SN
for some predicate P,
Plreplacel] = o
Plindirect «— Cyoor © indirect,l — U Choor, ¥ | € lhs_vars]
Plreplace2] =

missed_comms : Plindirect — head(indirect) Utail(indirect)]
not missed_comms : Plindirect — tail(indirect)]

Note again that no functional predicates have been used, that is, predicates on the mapping from variables to
values. Their use would greatly benefit the security analysis since it could allow the elimination of several guards
from consideration. For example, in the following program segment,

{ # >0} - predicate on functional state
[t<0— 5 02z=0—5 0z>0— S3]

one can eliminate the first guard from analysis because we know it can never execute and produce flows. Another
area where extra functional information is useful is in determining indirect flows. Some guards being true (or
false) have no implication regarding other guards. There is no indirect flow from the latter guards when one of
the former is true and its branch is executed. However, it is not clear how easy it would be when functionally
analyzing a program to know which guards are dependent; the predicates may not be always be able to give us
that information.

2.7.2 The Repetitive command
The template of the command is the following. The notation used is the same as in the alternative semantics.
(*i=1.N0OC; — S;;], 0) —bool(C4) (updatel;S;;update2’;*[i = 1.N OC; — S;;],0) or (update3, o)
and for a communications guard ...
(*[i=1.N OC; — S;;], o) =o€ (Sp:*[i = 1.N OC; — S;;],0”) or (update3, o)

where the updates are as before; and ¢’ is a valid state reached by a communication. The semantics can be
explained as follows. If the branch that executes has a Boolean guard, then there is an indirect flow from all
of the Boolean guards to all branches (updatel) The reasoning is the same as for the alternative command.
After the branch is executed, the indirect stack is popped (update2’, else part) except in the case where a
communication is skipped in another branch, where the indirect is re—updated using the W operator to account for
the rendezvous flow (update2’, then part). Finally, after termination of the command, indirect is updated along
with the lhs_vars variables, as was described in section 3, to capture the termination condition. The rendezvous
flow is implicitly taken care of (update3) for the case where no branch is taken.

And a rule describing the semantics, derived using the same reasoning as Rs_gpternative:
Rs—re etitive
P

if bool(C;) then (P = U[replacel], {U} Si {V}, V= P[replaceQ])
if comms(C;) then ({P} C; {Tl}, {Tz} S; {P})
P = Q[replaceB]
{P}*[01—>51DCQ—>SQD DCNHSN]{Q}

where L
Plreplaced] = Plindirect «— Choor Uindirect, [« U Choor, ¥ | € lhs_vars]

2.7.3 Proving Systems Information Flow Secure

The axioms and rules given permit us to prove that systems written in the CSP programming language are
infomation flow secure. Like for correctness proofs of parallel programs [2], a two-staged approach to proving
parallel programs secure is used. In the first stage, each process is proved individually with assumptions being
made on the values of the information flows exchanged between processes during communication. The second
stage validates these assumptions.

www.manaraa.com

Given that the proof system makes assumptions about the information flow exchanges made by a process in
the first stage, in both the send and receive command axioms, any post-condition can be established:

s—send
{ P } < Process = ! < Expression > { Q }

As—receive
{ P} < Process = 7 < Variable = { Q }

The suitability of the post-condition chosen 1s verified in the second stage of the proof using the following
communication axiom:

As—communication
{ z1 = indirecty, zo = indirecis }
Pz'l‘ || P17y
Yy =1z Uzx Uval(zndirecty) Uval(andirects), tndirect;y = z1 U 22, tndirects = zo U 2y
l(indirect l(indirecty), indirect indirect

The second phase of a CSP program flow security proof demonstrates that the proofs of each process Py, Ps,.....,
Pn co-operate:

co—operation

|| {pre;} P; {post;} i=1,..,N co-operate
{Apre; [i=1.N} P P]| [| P~ {Apost; [=1..N}

Processes co-operate if the following two conditions hold:

1. The predicates used in the proof of process F; contain no free variables modifiable in any other process F;.

2. For all semantically paired communication commands {p; } P; | < expression > {¢; } and {p; } P; 7 < variable
= e}

{pi ANp;j }P; ! < expression » || P;7 < variable > {¢; A ¢; }.

Note how condition (2) says semantically matching communication commands, that is, commands which name
each other’s process and which can possibly communicate during program execution. It may seem strange that
semantically paired commands are stated in the rule since the flow security state does not capture the semantically
matching commands. This 1s another area where a static security analysis is aided by a functional analysis.

Simple Example As an example of how the proof system works, consider a program where process A sends
secret information to process C via process B. The code and the predicates that we want to prove are given in
figure 5. We must be able to show that process C receives illegal information - that the predicate secrei_val € i is
true. Since all commands of each process are simple communication commands, each process is individually proved
using the fact that the communication command axioms permit any post-condition, and so the first phase of the
proof terminates. Note also that since no process contains a conditional statement, the indirects of each are empty.
The communication axiom means that the predicate Z={secret_val} must hold after the first of the commands in
process B; this axiom also enforces that the predicate y={secrel_val, z} holds after the communication command
in process C. Since the latter predicate implies the chosen post-condition, the program is proved.

{ true}
B! secret_va

{ true}

Process A Process B Process C

Figure 5: Simple Information Flow Proof Outline

www.manaraa.com

2.8 Example : a Secure Mail System Service

The following example is typical of many distibuted system applications. We consider a mail system with a
central server. The server receives messages from users and passes them on to the destination users. Moreover, so
that the system administrator has enough information to make decisions pertaining to resource usage, the server
maintains a log of who sends messages to whom. To guarantee information confidentiality for the mail service’s
clients, the system administrator must not be able to read any mail message that passes through the central
server.

An outline of the code of this system is given below.

client_send[i] :: client_receiveli] ::

var dest, smsg; var source, cmsg;

*[console 7 dest — *[server 7 source —
console 7 smsg; server 7 cmsg;
server | dest; console ! cmsg;
server | smsg; | console ! source;]

server ::

var message, dest, 1, req;

var no_comms; array send_commes, dest_comms;

message := 0; no_comms := 0; 1 := 0; dest := 0; req := 0;

*[SysAdmin ? req — SysAdmin ! send_comms; SysAdmin ! dest_comms;

O no_comms < 100 — client_send[i] 7 dest;
client_send[i] 7 message;
no_comms := no_comms + 1;
send_comms[no_commes] := i;
dest_comms[no_comms] := dest;
client_receive[dest] ! i;
client_receive[dest] | message;]

On the client side, the mail application contains two processes, client_send and client_receive, for sending
and receiving messages from the mail server respectively. The mail server accepts up to 100 messages from
clients, registers the sender and receiver and then transmits the message. The server also accepts requests from
a SysAdmin process (not shown) for mail service usage information.

Security Requirements & Proof The system is secure if the system administrator cannot know the text of
the actual messages that pass through the service. Thus, the data passed to the administrator, send_comms and
dest_comms, must not have received an information flow from the message variable of any client_send process:

Sec_Req = client_send[i].message & send_comms U dest_comms U val(indirect)

is always true in the server, that is, the invariant P of the server loop ensures P. We choose P as this invariant:

P = { {cs_dest} C dest, {cs_msg} C message, {nocomms} C mo_comms, {send_comms} C send_comms,
{dest_comms} C dest_comms, {dest, no_comms, dest_comms, cs_dest} C dest, {no_comms} € indirect }

since Sec_Req = P, we just need to show that P is indeed the invariant, and pre-condition, of the server’s loop.
cs_dest denotes the destination variable of the client_send process. The initial assignments in the server establish
a state satisfying:

pre = { all = {}, indirect = prec {} = }

where all stands for each of the process’ variables. The assigment axiom is used to verify this. For example, {pre’
req := 0 {pre}, holds since A;_.— means that the pre-condition holds if and only if pre = pre[Feq — val(indirect)].
The value of val(indirect) is {}, so the pre-condition pre’ given by the axiom is pre with the sub-predicate for
req removed. Following through this reasoning for each of the command, the predicate arrived for the server’s
pre-condition is val(indirect) = {}; this must be true since the indirect of each process is initially empty. The
result is that P is a satisfactory loop pre-condition; we need now only show that P is also a loop invariant.

There are two branches in the repetitive command, the first one being guarded by a communications command;
the command list of this branch only consists of communications commands. Following the repetitive command
and the axioms for the communications commands, we can let P be the post-condition of this sequence of
commands since any post-condition can be chosen. That P is a correct post-condition will be proved in the
second state of the proof.

www.manaraa.com

The second branch of the repetitive command is guarded by a Boolean expression. From the repetitive rule,
we define an inner invariant R as:

R = P but indirect = < {nocomms} {} = }

R is the same predicate as P except that the value for indirectis < {no_comms} {} ». R directly from the repetitive
rule, using the fact that C'_bool = {no_comms}. The last two commands of the branch list are communication
commands and we choose R as their pre-condition, assuming that R is the branch post-condition, which would be
true if R were the inner invariant. The third last command of the branch is the assignment dest_comms[no_comms]
:= dest. R is the post-condition, we let R’ be the pre-condition. From A,_.—, R’ is defined as:

Rldest_comms — {dest_comms, no_comms, dest} U dest_comms U dest U mo_comms U val(indirect)]

R[dest_comms — {dest_comms, no_comms, dest, c_msg}]
R but dest_comms removed

The predicate P but v removed is the predicate P but without any sub-predicate on the variable v. Following
this approach for the two other commands, the pre-condition to the no_comms := no_comms + 1 command, we
get

R but dest_comms, send_comms removed

Since R = R but dest_comms, send_comms removed, we insert R as the pre-condition using the standard
consequence rule. Finally since the first two commands of the branch command list are communication commands,
we claim that R is a suitable post-condition.

Thus R is preserved by both branches - it is an inner invariant. Since R was derived from P using R;_,cpetitive,
P is indeed the loop invariant and so the server process is proved so long as all assumptions made about the
communication commands are true. That these assumptions are true can be proved in the second stage of the
proof which now follows.

The client processes have only communication commands in their loop bodies. In the sending client processes,
we choose val(indirect) C {no_comms} as the invariant of the loop; in the receiving client process, we choose as
invariant:

cs_msg C {message, cs_msg, dest, send_comms, dest_comms }

We now outline that the proofs of the processes co-operate. Take the communication (client_send][i]) || (server !
s_msg) as an example. The communication axiom requires that the following post-conditions hold:

message = {cmsg} U val(indirectseryer) U val(indirectsient—send) C {no_comms, c_msg}
indireclseryer € {no_comms, c_msg}
indireclogient—send C {no_comms}

which is verified in the post-conditions that we have chosen. The proof of the other communications is similar.
In showing that the process proofs co-operate, we can be satisfied that the assumptions made in the first step in
the proof of the server process are valid, and thus that the loop invariant is true. Since this invariant satisfies the
security requirements, the mail system 1s proved secure.
2.9 Meaning & Flexibility of Semantics

We have presented an axiomatic proof system for verifying confidentiality properties of parallel programmed
systems. This proof system is based on a security semantics, though up until now, we have not been precise
about the foundations of this semantics. A concept such as ”can infer information” is not precise enough to
permit rigorous proofs since there is no way to gage whether the semantics are correct. The precise definition of
information flow which we have in fact been using is the following.

Suppose a program Prog with the following functional specification:

{z =29} Prog{y=Y}

that is, when the initial value of the variable x 1s xg, then the final value of variable y is one of the values in
the set Y. (Since a CSP program is non-deterministic, a variable may have more than one possible final value).
Suppose now that an information flow analysis confirms the following predicate:

{ true } Prog { « ¢ 7 }

www.manaraa.com

In [B] it is proven that the following predicate on the functional state must then hold:

{2 #20) Prog {y =Y}

that is, changing the initial value of = can in no way influence the final value of y, nor prevent the program from
terminating. The proof is based on the functional semantics of CSP [11]. In contrast, when the security proof
system implies that @ € ¥, then the final value of y need not be in the set Yj; indeed, the program may even be
prevented from terminating.

Another feature of our proof system is that it registers information flows to a variable in terms of the set of
information flow source variables. One can imagine that in the proof of a large system, the size of the security
variables, and consequently of the program predicates, becomes large. Moreover, security policies are often
expressed in terms of processes or process groups that may exchange information. In military secure systems for
instance, processes are classified as high-level or low-level. The security requirement of these systems is that low-
level users may not deduce high-level information, in other words, variables of low-level processes may not receive
information from variables of high-level processes. To facilitate security proofs of systems with such policies, [5]
presents a set of re-writing rules for the proof system; in its re-written version, the semantics registers flows in
terms of the processes that send flows. For example, the assigment x := y has as security semantics: T := selfU
7 U val(indirect) where self denotes the name of the containing process.

3 Detection of Security Leaks at Compilation-Time

An algorithm is presented in [4] whose aim is to verify the information flow security of sequential (CSP)
programs at compilation-time. We give a summary of this work here. The principal goal in developing compile-
time analysis techniques is to find a deterministic, and hence mechanisable, algorithm. The proof system which
we have presented is an unsuitable starting point since it contains two sources of non-determinism: i) the relation
between the P and Q predicates of the assignment command’s axiom is not one-to-one, and ii) the consequence
rule can be applied at any point in a proof.

{R} y := exp(z1, 52, ..., zn) {Ty(R)}

{P}si{Q}.{@}sz{R}
P}S1; S2(R}

Vi =1..n{P}S:i{Q:}
{P}[C1 — $,0C; — S,0.....0C, — S, [{{], @i}

vi=1.n{P°}5:{Q%), Q° : 0, Q% # PO, P! = P° QO
Vi=1.n{P1}5{Ql}, Q1 [Qf, Q" # P, P? = P! or

Vi=La{P"1}S{QI "}, @l = | Q! @il Pl pr=QnT!
{P%} x[C7 — S10C; — Sp0......0C, — S,][{P"}

Figure 6: Mechanisable Proof System

The proof system presented in figure 6 is mechanisable. Its equivalence to the proof system introduced above
is shown in [4] where this new proof system is developed in a series of steps. The consequence rule is removed;
the assignment axiom establishes as post-condition for pre-condition R, the set of properties directly deducable
from R; a property has the form » € y. For the assignment y := exp(z1, 2, .., %,), with pre-condition R, the
post-condition property set is denoted as T, (R) and is defined as follows:

Ty(Ry={agblagbAbZzytURN{cgy|cgm Uuvallindirect) N c# x; }

This means that all properties of the form @ € Z which are valid in R, are also valid after the command (for
z # y), since they receive no flow of information. In the post-condition, properties of the form (a € ¥) are not
valid, even if they are valid in R, whenever a is in Z; or ndirect; recall that these latter sets are added to ¥ in
the assignment semantics. The U operator of the semantics is the property intersection operator:

(gD AEEDIU((EDAEED=(2¢10)

Finally, the repetitive instruction is analyzed iteratively, until a fixed point is reached.

www.manaraa.com

This ”deterministic” semantics is used as the basis of a graph-based algorithm. Since all properties possess
the form = ¢ 7, the flow security state of a program can be represented by a directed graph. The nodes of the
graph are the variables at each point of the program: thus, node #; represents the variable z as it appears in
instruction numbered 7. An arc between two nodes represents an information flow; (#; — y;) signifies that a flow
of information occurs from # at program point ¢, to variable j at program point j. When no path exists between
two variables, no information flow path exists. Each instruction parsed adds arcs to the program security graph.

As an example, consider the decryption program of figure 7. It accepts as inputs cipher, the cipher-text to be
decrypted, a user’s decryption key, and unit, the cost of decrypting a single character. The output clear goes to
the user; the output charge goes to the user and the system administrator. A security requirement of this module
might be that the system administrator does not receive an information flow form the user’s clear-text clear. The
resulting graph of this program is shown in figure 8; note the absense of a path from the clear variable to any
instance of the charge variable. The program is thus secure since the administrator can infer nothing about the
user’s clear-text from the charge output.

var: i, charge, key, unit;
array: clear, cipher;
cipher := < message to be decrypted >;

wnit := < unit rate constant >;
(p1,charge := unit);
7= 0;

(p2*[cipher[r] # null_constant —
(p3,(pa,[encrypted(cipher{t]) — (ps,(ps,clear[i] := D(cipher[s], key));
(p7,charge := charge + 2*unit));
O not encrypted(cipher(i]) — (ps,(pg,clear[s] := cipher[i]);
(p1o,charge := charge + unit));
D

(pll,i = Z -|— 1))

Figure 7: Decryption Program

charge© unit® key O cipher 0 clear®

.7
clear

charge 4

Figure 8: Graph generated for decryption program

4 Discussion
The approach outlined in this paper is based on Denning’s work on information flow analysis of sequential

programs [7]. Different flow analysis techniques for parallel programs are presented by Andrews & Reitman [1]
and Mizuno & Oldhoeft [12]. A detailed analysis of this work is found in [3, 5].

The basic problem being addressed by this paper 1s that most systems use public domain software and that
security violations can occur not only by illegally reading information, but by inferring the value of confidential
information from other information using knowledge of the program text. The approach taken to tackle this
problem is a code analysis one, where the semantics of information flow for a parallel programming language are
defined, and an axiomatic proof system developed from this semantics. This proof system enables the security of

www.manaraa.com

parallel programmed systems to be verified by validating predicates on the information flows between variables
that are inserted into the program text.

Other security issues that are also vital for future distributed computer systems include authentication, audit
and intrusion tolerance. The problem being addressed in this paper is the basic security question - confidentiality
of information stored. This question has still not being satisfactorily treated in computer system. Without a
rigorous treatment of this question, these other mentioned mechanisms become superfluous.

The ideas put forward in this text are developed in [3] and [4]. Open areas of work include extending the compile-
time analysis, catering for other programmed structures such as exceptions and also, proofs by composition. The
latter is a facility for proving the security of a system by combining the proofs of its individual components.

References
[1] Andrews (G.R.), Reitman (R.P.), An Axiomatic Approach to Information Flow in Programs, in ACM
Transactions on Programming Languages and Systems, volume 2 (1), January 1980, pages 504-513.

[2] Apt (K.R.), Francez (N.), De Roever (W.P.), A Proof System for Communicating Sequential Processes, in
ACM Transactions on Programming Languages and Systems, volume 2 (3), July 1980, pages 359-385.

[3] Banatre (JP.), Bryce (C.), Information Flow Control in a Parallel Language Framework, in Proceedings of
the 6th IEEE. Workshop on the Foundations of Computer Security, Franconia, N.H., USA, June 1993, pages
46-61.

[4] Banatre (JP.), Bryce (C.), Le Métayer (D.), Compile-time Analysis of Information Flow in Sequential
Programs, in Proceedings of the 3rd European Symposium on Computer Security Research, Brighton,
U.K., November 1994, pages 46-61.

[5] Bryce (C.), Etude et mise en ceuvre des propriétés de sécurité, Rennes University, France, 1994.

[6] Cohen (L.), Information Transmission in Computational Systems, in Proceedings of the 6th Symposium on
Operating System Principles, Texas, 1977, pages 133-139.

[7] Denning (D.), A Lattice Model of Secure Information Flow, in Communications of the ACM, 19 (5), May
1976, pages 236-243.

[8] Department of Defense, Trusted Computer System Evaluation Criteria, August 1983.

[9] Harrison (M.A.), Ruzzo (W.L.), Ullman (J.D.), Protection in Operating Systems, in Communications of
the ACM, 19 (8), August 1976, pages 461-471.

[10] Hoare (C.A.R.), ”An Axiomatic Basis for Computer Programming”, in Communications of the ACM,
volume 12 (10), October 1969, pages 576-583.

[11] Hoare (C.A.R.), ”Communicating Sequential Processes”, in Communications of the ACM, volume 21 (8),

August 1978, pages 666-674.

[12] Mizuno (M.), Oldehoeft (A.), Information Flow Control in a Distributed Object-Oriented System: Parts I
& 2, Kansas State University, Report TR-CS-88-09. May 1988.

[13] Plotkin (G.D.), Structural Operational Semantics, in Lecture Notes, DAIMI FN-19, Aarhus University,
Denmark, 1981.

[14] Reitman (R.), Information Flow in Parallel Programs, PhD Thesis, Cornell University, USA, 1978.

[15] Sandhu (R.), Lattice-Based Enforcement of Chinese Walls, in Computers and Security, 11 (1992), pages
753-763.

www.manaraa.com

