
www.manaraa.com

An Approach to Information Security in Distributed SystemsC. Bryce, J-P. Banâtre, D. Le M�etayerIRISA/INRIA-Rennes,Campus de Beaulieu,35042 Rennes Cedex,France.AbstractInformation
ow control mechanisms detect and prevent illegal transfers of information within a computersystem. In this paper, we give an overview of a programming language based approach to information
ow controlin a system of communicating processes. The language chosen to present the approach is CSP. We give thesecurity semantics of CSP and show, with the aid of examples, how the semantics can be used to conduct bothmanual and automated security proofs of application programs.1 IntroductionOne of the most noteworthy trends in modern computing is the proliferation of automated systems to com-mercial, administrative and other �elds. The amount of sensitive information being stored in computer systemshas increased as a consequence and with that, the seriousness of an attack on a system where a user succeeds inillegally gaining access to information in the system. Distributed computing has excacerbated this problem sinceinformation can be accessed over wide geographical distances and so not only is there more means of attack, butit is more di�cult to control the processing activity of a system which leads to these attacks on the security, orcon�dentiality, of the information stored.Computer systems typically ensure information con�dentiality using access control mechanisms [9]. In Unix forexample, each �le has an access control list specifying the access rights (rwx) that the owner, the owner's groupand other users (denoted 'world') possess for the �le. The basic principle of access control models is to associatean access key with each operation on an object; only a process possessing a key may execute the associatedoperation on the object. Yet as the example in �gure 1 illustrates, information con�dentiality cannot be assuredby access controls alone. In this example, user John creates a mail message fyeo, denoting "for your eyes only",
FYEO COPY_FYEO

TOMBOBJOHN

readwrite read
writeFigure 1: Insecure Information Flowwhich he wants to send to user Bob. To do this, John creates the object fyeo and gives a key for the readoperation to Bob. To ensure that user Tom does not read the mail message, John can specify that Tom mustnot receive the read right for fyeo. Nevertheless, Bob may copy the contents of fyeo and write them to �leCopy fyeo, a �le for which Tom possesses a read right. The result is that an illegal information
ow from fyeoto Tom occurs which the access controls have not prevented. To prevent this type of information
ow, one couldstructure the access constraints of the system in such a way that Bob can never write to a �le that can be readby Tom; however, this means that no sharing of information can ever occur between these two users. Rather, amechanism is needed which allows the
ow of information in the system to be controlled.In the preceding example, there is an implicit assumption that an attacker, in this case Tom, has an under-standing of how the system behaves, that is, he expects that the data written to the �le Copy fyeo are the

www.manaraa.com

contents of the fyeo message sent to Bob by John. Note that Bob may not necessarily have wilfully divulgedthe contents of this message: his mail software may be errorness or infected by corrupt software known as aTrojan Horse [8]. That such an understanding of the system's behavior can be known by users is very plausible,given that common user programs, such as editors, mail programs and �le management utilities are often publicdomain software packages, available from any number of ftp sites. The information security problem that mustbe tackled is generalized in the schema of �gure 2.
Program Text

Begin

End.

Observer

....

Program Variables

Line of VisionFigure 2: Observer inferring InformationAn observer possesses a copy of the code of the application (e.g., mail program) - this is represented in the lefthand side of the �gure. The observer also sees what is happening at run-time, that is, the security policy of thesystem allows him to read the values of certain variables (e.g., mail objects). In the �gure, the variables whichthe observer is permitted to see are marked as shaded disks within the dotted circle; the disks outside of thiscircle represent the variables of the application program, the information in which the observer is forbidden toknow. The security requirement is the following: given that the observer knows the program text of the system,he must not be able to infer the value of the variables outside of the circle from the value of those variables inside;in other words, there must be no information
ow from the variables outside the circle to those on the inside.As an example of the problem being addressed, let x be a variable outside of the circle - a variable whose valuethe security policy of the system forbids the observer to know; let y be a variable inside the circle. If a programcontaining the single assignment y := x is executed, then an illegal information
ow occurs to the domain of theobserver: the observer can deduce the value of x from the value of y.This paper's approach to tackling this problem is to take a standard parallel programming language - we chooseCSP [11] - and to de�ne the set of information
ows that each command of the language e�ects. By formalizing thedescription of these
ows, the information
ow semantics of the language is de�ned. This is the subject of section2. Section 2 also details the semantics in axiomatic form, that is, as a series of axioms and rules [10] which areused to manually prove that information
ow restrictions placed on a program hold. In section 3, the information
ow semantics are developed into a compile-time algorithm that can automatically verify the information
owconstraints of a (sequential) program. Section 4 looks at related work and gives some conclusions.2 An Information Flow Security Proof SystemCSP [11] is a parallel programming language developed by TonyHoare; this language is analyzed for information
ow in the following discussion. The main language declarations are given in �gure 3.Prog ::= [label::Process k k label::Process] programProcess ::= Decl �; Decl �; Cmd �; Cmd � processDecl ::= var v j array v declarationsCmd ::= Comms j Alt j Rep j skip j v := E j Cmd; Cmd commandsComms ::= send j receive communicationsend ::= label ! E sendreceive ::= label ? v receiveAlt ::= [guard! Cmd � ; 2 guard! Cmd �] alternativeRep ::= *[guard! Cmd � ; 2 guard! Cmd �] repetitiveguard ::= B j Comms guardFigure 3: CSP Syntax DeclarationsIn the �gure, �� signi�es zero or more repetitions of the enclosed syntactical units, 'v' stands for a variableor a list of variables, 'E' for an integer expression and 'B' for a Boolean expression.

www.manaraa.com

A CSP program contains a �xed number of processes, each identi�ed by a character string 'label'. This 'label'may also be an array where the entry label[i] names a process which has the same code as the other processesnamed in the array. Processes communicate by two-way rendezvous: each process names the process that it wantsto communicate with; when one party in the communication executes its communication command, it blocks untilthe partner process is ready to execute its communication. The e�ect of the communication is to assign the valueof the expression evaluated in the sending process to the variable of the receiving process named in the receivecommand.The alternative and repetitive commands consist of one or more guard branch pairs. A guard is a Booleanexpression, a communications command or a Boolean expression followed by a communication. A guard is passableif, for an expression, it evaluates to true, and for a communication, the process named in the command is readyto communicate with it. For guards consisting of both a Boolean expression and a communications command,the expression must be true and the process named in the guard must be ready to communicate for the guard tobe passable.When an alternative command is executed, a branch whose guard is passable is chosen. If more than oneguard is passable, then any one of the corresponding branches can be executed. If no guards are passable thenthe process blocks until one of the communication guards becomes passable - unless there are no communicationguards or the processes named in the guards are terminated, in which case the command fails and the processterminates.On each iteration of the repetitive command, a branch whose guard is passable is executed. If more than oneguard is passable, then like for the alternative, any one of the branches is chosen. When no guard is passable, thecommand terminates and the process continues.2.1 Direct & Indirect Information FlowsThere are two classes of information
ows in programs. An assignment command causes a direct
ow ofinformation from the variables appearing on the right hand side of the (:=) operator to the variable on the lefthand side. This is because the information in each of the right hand side operands can in
uence by causing varietyin the left hand side variable [6]. More intuitively, an observer learns more about the right-hand side variablesafter execution of the command. The information that was in the destination variable is lost.Conditional commands introduce a second class of
ows [7]. The fact that a command is conditionally executedtransfers information to an observer on the value of the command guard. Consider the following program segment.We use a multiple assignment for brevity; e() is some expression:x := e();a := 0; b := 0;[x = 0 ! a := 12 x 6= 0 ! b := 1]If someone knows the program text then, by inspecting either a or b after program execution, an observer candeduce whether x was zero or not. This is an example of an implicit
ow [7] or what we will more generally referto as an indirect
ow.To reason about the information
ows of a program, some way of representing these
ows is needed. We notablyneed some way of representing the set of variables, information concerning which has
own to, or in
uenced, avariable v. We call this set the security variable of v, denoted v.Indirect
ows are modeled by the indirect variable, of which there is one per process, and is de�ned as a sequenceof sets of variables: indirect : (Pvariables)+(where P is the "set of" operator and + stands for the set of non-zero length sequences.) The empty or nilindirect is � fg �. The value of the
ow of indirect, denoted val(indirect) is the set of all variables in the indirectvariable. Let indirect(i) denote the ith of n entries:val(indirect) =̂ [n�1i=0 indirect(i)where [is the set union operator. Since indirect is just a sequence (of sets), we assume the head(), tail() andconcatenation (�) operators. A set of variables V may also be added to, as opposed to concatenated with, indirect.This is done with the] operator. The set V is set unioned with each entry in the indirect sequence.

www.manaraa.com

V] indirect =̂ �n�1i=0 (V [indirect(i))Finally, we will need an operator for combining two indirect variables together. The operator is t. Note that itis non-commutative. Its e�ect is to add using the] operator the variables in both indirects to the �rst indirectargument's entries: indirecti t indirectj =̂ (val(indirecti) [val(indirectj))] indirectiThe
ow security state of a program is de�ned as �rstly, the mapping from each variable to its security variableand secondly, the value of indirect. Note that all the axioms and rules given in this paper are in terms of the
owsecurity state, not the functional state (mapping from variables to values). When describing the behavior of thecommand types with respect to the
ow security state, we will use an operational notation similar to [13]. The
ow semantics are de�ned as a transition relation "!" which maps a program segment and state pair to anothersuch pair. The interpretation given (C1, �) ! (C2, �) is that the execution of the command structure C1 in
owsecurity state � leads to a state � from which the command structure C2 executes.2.2 Assignment Command Flow SemanticsThe command y := exp(x1; :::::; xN) has the e�ect of setting the security variable y to:fxi j i = 1::Ng [fxi j i = 1::Ng [val(indirect)The term fxi j i = 1::Ng captures the direct information
ow from each xi. The term fxi j i = 1::Ng capturethe transitivity of the information
ows. For example, the program [b := a; c := b] causes a
ow from variable aand b to variable c since c contains the value of both a and b.1 As mentioned, val(indirect) holds the value of theinformation
ows which the left hand side variable will indirectly receive. Indirect
ows are looked at shortly inthe context of the repetitive and alternative commands.A result of this approach is that a variable x may be a member of the security variable y even though y cannotbe used to infer the current value of x; a subsequent assignment may have altered x. This is intentional. As longas the current value of y is functionally dependent on a (perhaps former) value of x, then x will be in y. We aretrying to model the fact that y has received information form a source which may be forbidden to it, whateverthe current information content of that source. Of course, when y is reset or takes an assignment not involvingx, then x is no longer a member of the security variable y since y's new information content is independent of(any previous) content of x. An alternative approach, where instances of variables in the program are taggedis described in [5]; this mechanism permits the instances of a variable at various points of the program to bedi�erentiated.The e�ect of the assignment on the program security state is captured by the following axiom (�a la Hoare [10])2:A:=s f P[y (fxi j i = 1::Ng [fxi j i = 1::Ng [val(indirect))] gy := exp(x1; x2; :::::; xN)f P gwhere P [a b] is a predicate equivalent to P except that every free occurrence of the variable a is replaced byexpression b. This axiom generalizes assignments with array variables since the commands a[i] := e and e := a[i]are equivalent to a := exp(a; i; e) and e := exp(a; i) respectively.2.3 Sequential Composition of CommandsThe rule for sequential composition (;) follows. If the command S1 establishes a
ow security state satisfyingpredicate Q from a state P and S2 establishes R from Q, then S1 followed by S2 must establish a state satisfyingR from P:Rs�composition fPg S1 fQg, fQg S2 fRgfPg S1;S2 fRg1Constants are ignored in the
ow calculus since they give no information concerning the values of variables. A constant's securityvariable is always the empty set fg. Thus the assignment a:=0 sets a to val(indirect).2All our axioms and rules have an 's' (for secure) attached to their subscript to emphasize that they are de�ned on the
ow securitystate.

www.manaraa.com

2.4 Alternative Command Flow Semantics - Sequential CaseThe variables in a guard
ow indirectly in the branch when it executes since execution of the branch meansthat the guard must be true. Moreover, command guards can be related, so a guard being true may imply thevalue of other guards. Thus, we consider that there is an indirect
ow from the variables of all guards to thebranch that executes. Similarly, if a branch is not executed, then this could mean that its guard is false andtherefore other guards are true (or false). Thus, there is an indirect
ow from all guards to all branches whichare not executed. As an example of this, consider the following program segment.x; y := 0; 0;[B ! x := 7; y := 9 2 not B ! y := 2];[x = 7 ! S1 2 y = 9 ! S2 2 x = 0 ! S3];In the second alternative command, the execution of any branch gives information on all of the guards. Thatis, if S1 executes then the condition x = 7 must have been true. Consequently, an observer knows that y is 9from the �rst alternative statement. This information is also discernible by observing that S3 has not executed.Execution of S3 implies that x is zero and that therefore y is 2 since the second branch must have executed inthe preceding alternative.The behavior of a secure alternative command with respect to the
ow security state can be described asfollows. For a given
ow security state �,([i = 1..N 2Ci ! Si;], �) ! (update1;Si;update2,�)whereupdate1 =̂indirect := f c [c j c 2 Cbool g � indirect; l := l [f c [c j c 2 Cbool g 8 l 2 lhs varsupdate2 =̂indirect := tail(indirect)lhs vars is the set of variables appearing on the left hand side of the := operator in the branches of the command;Cbool is the set of variables appearing in the guards. Naturally, the branch executed depends on the functionalstate.The transition is explained as follows. The indirect
ows from the command guards exist only during thecommand body. Thus, indirect is updated on entry (update1) with the new indirect
ow value which is removedon exit (update2). Since the variables in the branches not executed do not see the e�ects of indirect, all variablesthat can receive assignments in the command, lhs vars, have their security variables updated with the
ow valueof the guard variables on entry (update1).A rule describing the semantics of the alternative command is the following. We let Cbool = fc[c j c 2 Cboolg;Rs�alternative P) R[indirect Cbool � indirect, l l [Cbool 8 l 2 lhs vars],8i = 1::N f R g Si f T g,T) Q[indirect tail(indirect)]f P g [C1 ! S1 2 C2 ! S2 2 2 CN ! SN] f Q gThe rule is geared towards
ow security proofs. Hence, for a predicate R, there is a predicate T that is establishedno matter which of the command branches Si is executed. The relation between P and R and between T and Qis that engendered by the assignment semantics and captures those modi�cations made to the
ow security statein update1 and update2.2.5 Repetitive Command Flow SemanticsRepetitive commands also cause indirect information
ows from the variables in the guards to all variableswhich could possibly receive
ows in the loop body since an observer of these variables can know the value of theguards by examining the variables in the loop - even if the loop does not execute.x; r := e1(); e2(); /* expressions return non-negative values */z; y; t := 0; 0; 0;*[x 6= y ! y := y + 12 r 6= t ! t := t + 1];z := 1;In this program segment, the values of y and t will equal x and r respectively on loop termination, even if noneof the branches execute.

www.manaraa.com

Moreover, as Reitman [14] points out, since all variables receiving direct
ows after the loop do so on conditionthat the loop terminates, the variables of the loop guards
ow indirectly to these variables. This is because it isknown after the loop termination that all guards are false. In the example above, by observing that z is 1, oneknows that x equals y and r equals t. Consider thus the behavior of the repetitive command with respect to the
ow security state:(*[i = 1..N 2Ci ! Si;], �) ! (update 1;Si;update2;*[i = 1..N 2Ci ! Si;],�) or (update3, �)whereupdate3 =̂indirect := f c [c j c 2 Cbool g] indirect; l := l [f c [c j c 2 Cbool gOn each iteration of the loop, the
ow value of the loop guard is pushed onto the indirect stack (update1) andpopped at the end (update2). When the loop �nally terminates, the indirect
ow from the loop conditions toall variables that could have received a
ow in the loop (lhs vars, to cater for the case when no branch executes)and all variables which subsequently receive a
ow is recorded (update3). Note how the] operation is usedinstead of the � to capture the permanence of the change in indirect; moreover, the number of entries in indirectis the same on entry and exit since any arbitrary nesting scheme of alternative and repetitive commands must besupported.A rule for how the secure repetitive command in
uences the
ow security state is:Rs�repetitive P) R[indirect Cbool � indirect, l l [Cbool 8 l 2 lhs vars],R) P[indirect tail(indirect)],8i = 1::N f R g Si f R g,P) Q[indirect Cbool] indirect, l l [Cbool 8 l 2 lhs vars]f P g �[C1 ! S1 2 C2 ! S2 2 2 CN ! SN] f Q gWe justify this rule using the transition given above. Since the command body may be executed any number oftimes, we need an invariant on the
ow security state. P serves as this invariant. Moreover, the modi�cationsthat occur to the lhs vars and indirect variables at the start and end of each branch allow an inner invariant Rto be established. After termination, the �nal modi�cations to the
ow variables establish a state satisfying Q.2.6 Communication Command Flow SemanticsThe e�ect of the communication command is to assign the expression in the send command to the variable inthe receive command. This is a direct
ow. In addition, both indirects are updated to include each other's valueusing the t operator since execution of both processes is now dependent on the rendezvous having taken place,that is, an observer of each process is aware that the other process has communicated.(P2!x k P1?y, �) ! (�, �')where � resembles �' except that y in �' equals (x [x [val(indirect1) [val(indirect2)), indirect1 in �' equals(indirect1 t indirect2) of � and indirect2 is (indirect2 t indirect1) of �.2.7 ParallelismIt was mentioned in the last section that there is an indirect
ow from conditional command guard variablesto the variables which can receive
ows in the branches. In a similar way, when a process does a rendezvous,there are subsequent updates and communications with other processes. The fact that these communicationstake place, and that the updates which follow are made, gives information to observers of other processes aboutthe condition that was met in the process that made the �rst rendezvous.Take the example in �gure 4. An observer sees what is happening in process P2 at run-time. Since he knows theprocess text, he can deduce the following results: If the value of y changes, then a must be zero in process P1; ifb 6= 0 and r becomes 1, P1 did not take the branch with the communication command in its alternative commandand so (a 6= 0) must hold. Thus, indirect inter-process information
ows may occur without a communicationtaking place.The solution we propose is to transfer the
ow value of a condition on which a communication executes, only ifthe communication takes place. If the communication is skipped, then the
ow value of the condition is recordedin a special variable rendezvous (one per process). On each communication, rendezvous in transferred in bothdirections as part of the indirect
ow. In our mechanism, rendezvous is incorporated into the indirect variable.This approach works because interprocess indirect
ows can only signal any useful information if a process fromwhich the
ow originates, (transitively) communicates with the process with which it should have communicated,later on. With the rendezvous mechanism, we are guaranteed that the
ow value of the condition in question willbe transferred when this subsequent communication occurs.

www.manaraa.com

[a = 0 --> P2 ! x

 a <>0 --> skip];

P2 ! 1

[b=0 --> P1 ? y

b <> 0 --> skip

P1 ? r

Process P1 Process P2Figure 4: Parallelism and Information Flow2.7.1 The Alternative commandThe complete alternative command of CSP is more complex than that introduced earlier. A guard may be aBoolean expression, a communications command or a Boolean expression followed by a communications command.However, in the presentation which follows, we assume the latter form b;�! S to be rewritten as b! �;S whereb is a non-constant Boolean expression, � a communications and S a command sequence.As mentioned previously, when a branch with a Boolean guard executes, there is an indirect information
owfrom all Boolean guards to the branch variables. In contrast, a communications guard creates no such
ow -one cannot know the value of some Boolean guard from the fact that a communications guard was passable andits branch executed. The indirect
ows in each branch e�ected by the complete alternative command are nowsummarized:When a branch with a Boolean guard executes, its guard variables
ow indirectly in the branch since the con-dition must be true; the other Boolean guards also
ow since the branch guard may imply that they are trueor false. All other branches receive a
ow from the Boolean guards, even branches with communication guards,since the branch not executing may mean that a Boolean guard somewhere is true.When a branch with a communications guard executes, there are no indirect
ows in the command since noth-ing can be inferred about the values of the Boolean guards. Execution of the branch is not conditioned on thevalue of any of the command's Boolean guards.The transitions for the alternative command is the following.([i = 1..N 2Ci ! Si;], �) !bool(Ci) (update1;Si;update2',�)where update1 is the same as for the sequential version, bool(Ci) is true if the guard is a Boolean expression,otherwise comms(Ci); missed comms is true if one of the other branches of the alternative command contains acommunication with a process other than one communicated with in the executing branch.update2' =̂ if missed commsthen indirect := head(indirect)] tail(indirect)else indirect := tail(indirect)endifAnd for a branch with a communications guard.([i = 1..N 2Ci ! Si;], �) !comms(Ci) (Si, �')if there exists a matching communication command �, such that (� k Ci, �) ! (�, �').The semantics is explained as follows. update1 captures the indirect
ows that occur in the branches at thestart of a Boolean guarded branch - all guards' variables
ow to all branches. After the branch has executed, onemust undo the changes to the indirect stack for the branch if it has a Boolean guard (update2', else part) exceptif a communications with some other process, not communicated with in the current branch, has been skipped.This captures the
ow arising due to the rendezvous mechanism (update2', then part).

www.manaraa.com

We derive the following rule:Rs�alternative if bool(Ci) then (P) U[replace1], fUg Si fVg, V) Q[replace2])if comms(Ci) then (f P g Ci f Ti g, f Ti g Si f Q g)f P g [C1 ! S1 2 C2 ! S2 2 2 CN ! SN] f Q gfor some predicate P,P[replace1] =̂P[indirect Cbool � indirect,l l [Cbool, 8 l 2 lhs vars]P[replace2] =̂missed comms : P[indirect head(indirect) [tail(indirect)]not missed comms : P[indirect tail(indirect)]Note again that no functional predicates have been used, that is, predicates on the mapping from variables tovalues. Their use would greatly bene�t the security analysis since it could allow the elimination of several guardsfrom consideration. For example, in the following program segment,f x � 0 g { predicate on functional state[x < 0 ! S1 2 x = 0 ! S2 2 x > 0 ! S3]one can eliminate the �rst guard from analysis because we know it can never execute and produce
ows. Anotherarea where extra functional information is useful is in determining indirect
ows. Some guards being true (orfalse) have no implication regarding other guards. There is no indirect
ow from the latter guards when one ofthe former is true and its branch is executed. However, it is not clear how easy it would be when functionallyanalyzing a program to know which guards are dependent; the predicates may not be always be able to give usthat information.2.7.2 The Repetitive commandThe template of the command is the following. The notation used is the same as in the alternative semantics.(*[i = 1..N 2Ci ! Si;], �) !bool(Ci) (update1;Si;update2';*[i = 1..N 2Ci ! Si;],�) or (update3, �)and for a communications guard ...(*[i = 1..N 2Ci ! Si;], �) !comms(Ci) (Si;*[i = 1..N 2Ci ! Si;],�') or (update3, �)where the updates are as before; and �' is a valid state reached by a communication. The semantics can beexplained as follows. If the branch that executes has a Boolean guard, then there is an indirect
ow from allof the Boolean guards to all branches (update1). The reasoning is the same as for the alternative command.After the branch is executed, the indirect stack is popped (update2', else part) except in the case where acommunication is skipped in another branch, where the indirect is re-updated using the] operator to account forthe rendezvous
ow (update2', then part). Finally, after termination of the command, indirect is updated alongwith the lhs vars variables, as was described in section 3, to capture the termination condition. The rendezvous
ow is implicitly taken care of (update3) for the case where no branch is taken.And a rule describing the semantics, derived using the same reasoning as Rs�alternative:Rs�repetitive if bool(Ci) then (P) U[replace1], fUg Si fVg, V) P[replace2]),if comms(Ci) then (fPg Ci fTig, fTig Si fPg),P) Q[replace3]f P g �[C1 ! S1 2 C2 ! S2 2 2 CN ! SN] f Q gwhereP[replace3] =̂ P[indirect Cbool [indirect, l l [Cbool, 8 l 2 lhs vars]2.7.3 Proving Systems Information Flow SecureThe axioms and rules given permit us to prove that systems written in the CSP programming language areinfomation
ow secure. Like for correctness proofs of parallel programs [2], a two-staged approach to provingparallel programs secure is used. In the �rst stage, each process is proved individually with assumptions beingmade on the values of the information
ows exchanged between processes during communication. The secondstage validates these assumptions.

www.manaraa.com

Given that the proof system makes assumptions about the information
ow exchanges made by a process inthe �rst stage, in both the send and receive command axioms, any post-condition can be established:As�send f P g � Process � ! � Expression � f Q gAs�receive f P g � Process � ? � Variable � f Q gThe suitability of the post-condition chosen is veri�ed in the second stage of the proof using the followingcommunication axiom:As�communication f z1 = indirect1, z2 = indirect2 gP2!x k P1?yf y = fxg [x [val(indirect1) [val(indirect2), indirect1 = z1 t z2, indirect2 = z2 t z1 gThe second phase of a CSP program
ow security proof demonstrates that the proofs of each process P1, P2,.....,PN co-operate:Rco�operation k fpreig Pi fpostig i = 1,...,N co-operatef^prei j i = 1::Ng P1 k P2 k k PN f^posti j i = 1::NgProcesses co-operate if the following two conditions hold:1. The predicates used in the proof of process Pi contain no free variables modi�able in any other process Pj.2. For all semantically paired communication commands fpigPj ! � expression � fqig and fpjgPi ? � variable� fqjg, fpi ^ pjgPj ! � expression � k Pi? � variable � fqi ^ qjg.Note how condition (2) says semantically matching communication commands, that is, commands which nameeach other's process and which can possibly communicate during program execution. It may seem strange thatsemantically paired commands are stated in the rule since the
ow security state does not capture the semanticallymatching commands. This is another area where a static security analysis is aided by a functional analysis.Simple Example As an example of how the proof system works, consider a program where process A sendssecret information to process C via process B. The code and the predicates that we want to prove are given in�gure 5. We must be able to show that process C receives illegal information - that the predicate secret val 2 y istrue. Since all commands of each process are simple communication commands, each process is individually provedusing the fact that the communication command axioms permit any post-condition, and so the �rst phase of theproof terminates. Note also that since no process contains a conditional statement, the indirects of each are empty.The communication axiom means that the predicate x=fsecret valg must hold after the �rst of the commands inprocess B; this axiom also enforces that the predicate y=fsecret val, xg holds after the communication commandin process C. Since the latter predicate implies the chosen post-condition, the program is proved.
{ true }

{ true }

{ true }

{secret_val in y }{secret val in x}

A ? x

C ! x
B ! secret_val

B ? y

Process A Process B Process CFigure 5: Simple Information Flow Proof Outline

www.manaraa.com

2.8 Example : a Secure Mail System ServiceThe following example is typical of many distibuted system applications. We consider a mail system with acentral server. The server receives messages from users and passes them on to the destination users. Moreover, sothat the system administrator has enough information to make decisions pertaining to resource usage, the servermaintains a log of who sends messages to whom. To guarantee information con�dentiality for the mail service'sclients, the system administrator must not be able to read any mail message that passes through the centralserver.An outline of the code of this system is given below.client send[i] :: client receive[i] ::var dest, smsg; var source, cmsg;*[console ? dest ! *[server ? source !console ? smsg; server ? cmsg;server ! dest; console ! cmsg;server ! smsg;] console ! source;]k kserver ::var message, dest, i, req;var no comms; array send comms, dest comms;message := 0; no comms := 0; i := 0; dest := 0; req := 0;*[SysAdmin ? req ! SysAdmin ! send comms; SysAdmin ! dest comms;2 no comms < 100 ! client send[i] ? dest;client send[i] ? message;no comms := no comms + 1;send comms[no comms] := i;dest comms[no comms] := dest;client receive[dest] ! i;client receive[dest] ! message;]On the client side, the mail application contains two processes, client send and client receive, for sendingand receiving messages from the mail server respectively. The mail server accepts up to 100 messages fromclients, registers the sender and receiver and then transmits the message. The server also accepts requests froma SysAdmin process (not shown) for mail service usage information.Security Requirements & Proof The system is secure if the system administrator cannot know the text ofthe actual messages that pass through the service. Thus, the data passed to the administrator, send comms anddest comms, must not have received an information
ow from the message variable of any client send process:Sec Req =̂ client send[i].message 62 send comms [dest comms [val(indirect)is always true in the server, that is, the invariant P of the server loop ensures P. We choose P as this invariant:P =̂ f fcs destg � dest, fcs msgg � message, fno commsg � no comms, fsend commsg � send comms,fdest commsg � dest comms, fdest, no comms, dest comms, cs destg � dest, fno commsg 2 indirect gsince Sec Req) P, we just need to show that P is indeed the invariant, and pre-condition, of the server's loop.cs dest denotes the destination variable of the client send process. The initial assignments in the server establisha state satisfying: pre = f all = fg, indirect = prec fg � gwhere all stands for each of the process' variables. The assigment axiom is used to verify this. For example, fpre'greq := 0 fpreg, holds since As�:= means that the pre-condition holds if and only if pre) pre[req val(indirect)].The value of val(indirect) is fg, so the pre-condition pre' given by the axiom is pre with the sub-predicate forreq removed. Following through this reasoning for each of the command, the predicate arrived for the server'spre-condition is val(indirect) = fg; this must be true since the indirect of each process is initially empty. Theresult is that P is a satisfactory loop pre-condition; we need now only show that P is also a loop invariant.There are two branches in the repetitive command, the �rst one being guarded by a communications command;the command list of this branch only consists of communications commands. Following the repetitive commandand the axioms for the communications commands, we can let P be the post-condition of this sequence ofcommands since any post-condition can be chosen. That P is a correct post-condition will be proved in thesecond state of the proof.

www.manaraa.com

The second branch of the repetitive command is guarded by a Boolean expression. From the repetitive rule,we de�ne an inner invariant R as:R = P but indirect = � fno commsg fg � gR is the same predicate as P except that the value for indirect is� fno commsg fg �. R directly from the repetitiverule, using the fact that C bool = fno commsg. The last two commands of the branch list are communicationcommands and we choose R as their pre-condition, assuming that R is the branch post-condition, which would betrue if R were the inner invariant. The third last command of the branch is the assignment dest comms[no comms]:= dest. R is the post-condition, we let R' be the pre-condition. From As :=, R' is de�ned as:R[dest comms fdest comms, no comms, destg [dest comms [dest [no comms [val(indirect)]R[dest comms fdest comms, no comms, dest, c msgg]R but dest comms removedThe predicate P but v removed is the predicate P but without any sub-predicate on the variable v. Followingthis approach for the two other commands, the pre-condition to the no comms := no comms + 1 command, weget R but dest comms, send comms removedSince R) R but dest comms, send comms removed, we insert R as the pre-condition using the standardconsequence rule. Finally since the �rst two commands of the branch command list are communication commands,we claim that R is a suitable post-condition.Thus R is preserved by both branches - it is an inner invariant. Since R was derived from P using Rs�repetitive,P is indeed the loop invariant and so the server process is proved so long as all assumptions made about thecommunication commands are true. That these assumptions are true can be proved in the second stage of theproof which now follows.The client processes have only communication commands in their loop bodies. In the sending client processes,we choose val(indirect) � fno commsg as the invariant of the loop; in the receiving client process, we choose asinvariant: cs msg � fmessage, cs msg, dest, send comms, dest comms gWe now outline that the proofs of the processes co-operate. Take the communication (client send[i]) k (server !s msg) as an example. The communication axiom requires that the following post-conditions hold:message = fc msgg [val(indirectserver) [val(indirectclient�send) � fno comms, c msggindirectserver � fno comms, c msggindirectclient�send � fno commsgwhich is veri�ed in the post-conditions that we have chosen. The proof of the other communications is similar.In showing that the process proofs co-operate, we can be satis�ed that the assumptions made in the �rst step inthe proof of the server process are valid, and thus that the loop invariant is true. Since this invariant satis�es thesecurity requirements, the mail system is proved secure.2.9 Meaning & Flexibility of SemanticsWe have presented an axiomatic proof system for verifying con�dentiality properties of parallel programmedsystems. This proof system is based on a security semantics, though up until now, we have not been preciseabout the foundations of this semantics. A concept such as "can infer information" is not precise enough topermit rigorous proofs since there is no way to gage whether the semantics are correct. The precise de�nition ofinformation
ow which we have in fact been using is the following.Suppose a program Prog with the following functional speci�cation:f x = x0 g Prog f y = Y0 gthat is, when the initial value of the variable x is x0, then the �nal value of variable y is one of the values inthe set Y0. (Since a CSP program is non-deterministic, a variable may have more than one possible �nal value).Suppose now that an information
ow analysis con�rms the following predicate:f true g Prog f x 62 y g

www.manaraa.com

In [5] it is proven that the following predicate on the functional state must then hold:f x 6= x0 g Prog f y = Y0 gthat is, changing the initial value of x can in no way in
uence the �nal value of y, nor prevent the program fromterminating. The proof is based on the functional semantics of CSP [11]. In contrast, when the security proofsystem implies that x 2 y, then the �nal value of y need not be in the set Y0; indeed, the program may even beprevented from terminating.Another feature of our proof system is that it registers information
ows to a variable in terms of the set ofinformation
ow source variables. One can imagine that in the proof of a large system, the size of the securityvariables, and consequently of the program predicates, becomes large. Moreover, security policies are oftenexpressed in terms of processes or process groups that may exchange information. In military secure systems forinstance, processes are classi�ed as high-level or low-level. The security requirement of these systems is that low-level users may not deduce high-level information, in other words, variables of low-level processes may not receiveinformation from variables of high-level processes. To facilitate security proofs of systems with such policies, [5]presents a set of re-writing rules for the proof system; in its re-written version, the semantics registers
ows interms of the processes that send
ows. For example, the assigment x := y has as security semantics: x := self [y [val(indirect) where self denotes the name of the containing process.3 Detection of Security Leaks at Compilation-TimeAn algorithm is presented in [4] whose aim is to verify the information
ow security of sequential (CSP)programs at compilation-time. We give a summary of this work here. The principal goal in developing compile-time analysis techniques is to �nd a deterministic, and hence mechanisable, algorithm. The proof system whichwe have presented is an unsuitable starting point since it contains two sources of non-determinism: i) the relationbetween the P and Q predicates of the assignment command's axiom is not one-to-one, and ii) the consequencerule can be applied at any point in a proof.fRg y := exp(x1; x2; :::::; xn) fTy(R)gfPgS1fQg;fQgS2fRgfPgS1;S2fRg8i= 1::nfPgSifQigfPg[C1 ! S12C2 ! S22::::::2Cn ! Sn]fFiQig8i= 1::nfP 0gSifQ0ig; Q0 = FiQ0i ; Q0 6) P 0; P 1 = P 0 F Q08i= 1::nfP 1gSifQ1ig; Q1 = FiQ1i ; Q1 6) P 1; P 2 = P 1 F Q1...8i = 1::nfPn�1gSifQn�1i g; Qn�1 = FiQn�1i ; Qn�1) Pn�1 ; Pn = Qn�1fP 0g � [C1 ! S12C2 ! S22::::::2Cn ! Sn]fPngFigure 6: Mechanisable Proof SystemThe proof system presented in �gure 6 is mechanisable. Its equivalence to the proof system introduced aboveis shown in [4] where this new proof system is developed in a series of steps. The consequence rule is removed;the assignment axiom establishes as post-condition for pre-condition R, the set of properties directly deducablefrom R; a property has the form x 62 y. For the assignment y := exp(x1; x2; ::; xn), with pre-condition R, thepost-condition property set is denoted as Ty(R) and is de�ned as follows:Ty(R) =̂ f a 62 b j a 62 b ^ b 6= y g S R \ f c 62 y j c 62 xi [val(indirect) ^ c 6= xi gThis means that all properties of the form a 62 z which are valid in R, are also valid after the command (forz 6= y), since they receive no
ow of information. In the post-condition, properties of the form (a 62 y) are notvalid, even if they are valid in R, whenever a is in xi or indirect; recall that these latter sets are added to y inthe assignment semantics. The t operator of the semantics is the property intersection operator:((x 62 y) ^ (z 62 t)) t ((x 62 t) ^ (z 62 t) = (z 62 t)Finally, the repetitive instruction is analyzed iteratively, until a �xed point is reached.

www.manaraa.com

This "deterministic" semantics is used as the basis of a graph-based algorithm. Since all properties possessthe form x 62 y, the
ow security state of a program can be represented by a directed graph. The nodes of thegraph are the variables at each point of the program: thus, node xi represents the variable x as it appears ininstruction numbered i. An arc between two nodes represents an information
ow; (xi ! yj) signi�es that a
owof information occurs from x at program point i, to variable j at program point j. When no path exists betweentwo variables, no information
ow path exists. Each instruction parsed adds arcs to the program security graph.As an example, consider the decryption program of �gure 7. It accepts as inputs cipher, the cipher-text to bedecrypted, a user's decryption key, and unit, the cost of decrypting a single character. The output clear goes tothe user; the output charge goes to the user and the system administrator. A security requirement of this modulemight be that the system administrator does not receive an information
ow form the user's clear-text clear. Theresulting graph of this program is shown in �gure 8; note the absense of a path from the clear variable to anyinstance of the charge variable. The program is thus secure since the administrator can infer nothing about theuser's clear-text from the charge output.var: i, charge, key, unit;array: clear, cipher;cipher := � message to be decrypted�;unit := � unit rate constant �;(p1,charge := unit);i := 0;(p2,�[cipher[i] 6= null constant!(p3,(p4,[encrypted(cipher[i])! (p5,(p6,clear[i] := D(cipher[i], key));(p7,charge := charge + 2*unit));2 not encrypted(cipher[i])! (p8,(p9,clear[i] := cipher[i]);(p10,charge := charge + unit));]);(p11,i := i + 1))]) Figure 7: Decryption Program
unit clearcipherkeycharge

charge

charge

chargecharge

i

i

clear clear

clear

0 0 0 0 0 0

1

7

4

6

4

1

9

10Figure 8: Graph generated for decryption program4 DiscussionThe approach outlined in this paper is based on Denning's work on information
ow analysis of sequentialprograms [7]. Di�erent
ow analysis techniques for parallel programs are presented by Andrews & Reitman [1]and Mizuno & Oldhoeft [12]. A detailed analysis of this work is found in [3, 5].The basic problem being addressed by this paper is that most systems use public domain software and thatsecurity violations can occur not only by illegally reading information, but by inferring the value of con�dentialinformation from other information using knowledge of the program text. The approach taken to tackle thisproblem is a code analysis one, where the semantics of information
ow for a parallel programming language arede�ned, and an axiomatic proof system developed from this semantics. This proof system enables the security of

www.manaraa.com

parallel programmed systems to be veri�ed by validating predicates on the information
ows between variablesthat are inserted into the program text.Other security issues that are also vital for future distributed computer systems include authentication, auditand intrusion tolerance. The problem being addressed in this paper is the basic security question - con�dentialityof information stored. This question has still not being satisfactorily treated in computer system. Without arigorous treatment of this question, these other mentioned mechanisms become super
uous.The ideas put forward in this text are developed in [3] and [4]. Open areas of work include extending the compile-time analysis, catering for other programmed structures such as exceptions and also, proofs by composition. Thelatter is a facility for proving the security of a system by combining the proofs of its individual components.References[1] Andrews (G.R.), Reitman (R.P.), An Axiomatic Approach to Information Flow in Programs, in ACMTransactions on Programming Languages and Systems, volume 2 (1), January 1980, pages 504-513.[2] Apt (K.R.), Francez (N.), De Roever (W.P.), A Proof System for Communicating Sequential Processes, inACM Transactions on Programming Languages and Systems, volume 2 (3), July 1980, pages 359-385.[3] Banâtre (JP.), Bryce (C.), Information Flow Control in a Parallel Language Framework, in Proceedings ofthe 6th IEEE Workshop on the Foundations of Computer Security, Franconia, N.H., USA, June 1993, pages46-61.[4] Banâtre (JP.), Bryce (C.), Le M�etayer (D.), Compile-time Analysis of Information Flow in SequentialPrograms, in Proceedings of the 3rd European Symposium on Computer Security Research, Brighton,U.K., November 1994, pages 46-61.[5] Bryce (C.), �Etude et mise en �uvre des propri�et�es de s�ecurit�e, Rennes University, France, 1994.[6] Cohen (L.), Information Transmission in Computational Systems, in Proceedings of the 6th Symposium onOperating System Principles, Texas, 1977, pages 133-139.[7] Denning (D.), A Lattice Model of Secure Information Flow, in Communications of the ACM, 19 (5), May1976, pages 236-243.[8] Department of Defense, Trusted Computer System Evaluation Criteria, August 1983.[9] Harrison (M.A.), Ruzzo (W.L.), Ullman (J.D.), Protection in Operating Systems, in Communications ofthe ACM, 19 (8), August 1976, pages 461-471.[10] Hoare (C.A.R.), "An Axiomatic Basis for Computer Programming", in Communications of the ACM,volume 12 (10), October 1969, pages 576-583.[11] Hoare (C.A.R.), "Communicating Sequential Processes", in Communications of the ACM, volume 21 (8),August 1978, pages 666-674.[12] Mizuno (M.), Oldehoeft (A.), Information Flow Control in a Distributed Object-Oriented System: Parts I& 2, Kansas State University, Report TR-CS-88-09. May 1988.[13] Plotkin (G.D.), Structural Operational Semantics, in Lecture Notes, DAIMI FN-19, Aarhus University,Denmark, 1981.[14] Reitman (R.), Information Flow in Parallel Programs, PhD Thesis, Cornell University, USA, 1978.[15] Sandhu (R.), Lattice-Based Enforcement of Chinese Walls, in Computers and Security, 11 (1992), pages753-763.

